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Abstract. We consider various formulations of what may be called q-quantum mechanics. 
One involves replacing the commutator that appears in the Heisenberg equations of motion 
by the 'quommutator': [ A ,  E ] ,  = qAB- ( l /q )BA.  We formally integrate the equations of 
motion, study some simple examples, and discuss various apparent difficulties such as lack 
of conservation of energy, lack of unitarily, and the unboundedness of the norm. We also 
consider another formulation in which the quantum bracket of the time derivative of an 
operator is used instead of just the time derivative, but the commutator is unchanged, in 
the Heisenberg equations of motion. This nonlinear treatment, while preserving consewa- 
tion of energy, has its own set of difficulties due to the nonlinearities. We also suggest that 
the quantum parameter may function as a kind of regulator for the time evolution of the 
s v s t e m . 

1. Introduction 

The notion of a quantum group [ 11 or, more properly, a quantized universal enveloping 
algebra, has recently received considerable attention in the physics literature in connec- 
tion with conformal field theories, topological field theories, and exactly solvable lattice 
models, in all of which the Yang-Baxter equation plays a central role [2,3]. In much 
of this work the role of quantum groups, while crucial in the analysis of these systems, 
has not been that of a direct symmetry. 

However, in the work of Pasquier and Saleur [3] the generators of the quantum 
Lie algebra su(2), actually commute with the Hamiltonian of the one-dimensional 
spin chain they investigated, and so su(2), is a direct symmetry of the system. Yet in 
the cases when the deforming parameter q is not a root of unity, it has been pointed 
out [4] that, by making use of the deforming mappings constructed by Curtright and 
Zachos [ 5 ] ,  these Hamiltonians are also necessarily invariant under ordinary su(2). 
So, at least in these q' # 1 cases, it seems that these spin chain models do not exhibit 
any really new physics. This is confirmed by the identical representation content of 
the deformed algebra and its classical parent when q' # 1. There are, however, striking 
and significant differences when q is a raot of unity. 

In connection with the study of quantum groups, there have been various investiga- 
tions of deformed harmonic oscillator algebras and thereby deformed Heisenberg 
algebras [6]. One can regard this as a modification of one of the basic postulate relations 
of quantum mechanics. This, and all the above, raises the question of whether it may 
be possible to use the idea of a quantum deformation in a yet more central way, directly 
in the dynamics and structure of quantum mechanics itself, so that one considers a 
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quantum-deformed quantum mechanics, or more compactly (and with less emphasis 
on the apparent ,pleonasm due to the misnominous quantum in quantum groups) a 
q-quantum mechanics. This is guaranteed to have immediate physical consequences; 
whether these consequences are desirable or even tolerable will be discussed at the 
end of this article. At the very best, one leams from such an investigation what is really 
essential for a mechanics to make sense, and what is only apparently so. 

One of the definitions of quantum SU(2) is to modify the usual Lie algebra (here 
Jo is twice its conventional value in quantum mechanics) 

A Cho$os a n d  D G C a l d i  

[ l o ,  J*1=*2J* ( l a )  
[ J + ,  J - I  = Jo (Ib) 

[ J o ,  J J = * 2 J *  ( 2 0 )  

[ J + ,  J - I = [ J o l q  (26) 

by setting 

and 

where, for any x, [ X I ,  = ( q ~ / 2 - q - - r / 2 ) / ( q ” 2 - q - 1 / 2 ) .  As q +  1, the quantum algebra 
reduces to the usual one. 

There is another way to introduce the quantum deformation [ 7 ] ,  which involves 
modifying the left-hand side of the SU(2) commutation relations rather than the 
right-hand side. We define the ‘quommutator’ [A, BI4 of two operators A and B :  

(3) 
‘ 1  

4 
[ A , B ] , z q A B - - B A .  

Then an equivalent way of deforming SU(2) is to write 

[ J o ,  J d s z = * J +  [ J + ,  J - l ~ / s = J o .  (4) 
In this paper we will explore both methods to deform the basic dynamical laws of 
quantum mechanics itself. 

2. Q-quantum mechanics 

Let X ( t )  be an observable in the theory. In the first method of introducing the 
deformation, we postulate that its evolution be given by the modified Heisenberg 
equation of motion (this deformation was briefly considered (and rejected) in [ S I ) :  

X ( t ) = i [ H ( / ) ,  X ( / ) I q .  ( 5 )  
Here H ( t )  is the Hamiltonian for the system. It is easy to see that H cannot be 
consistently taken to be a constant, because we can apply equation ( 5 )  to H itself 

H ( t )  =i[H( t ) ,  H(t)l,  
= i rH2(t)  ( 6 )  

where we have written 

r = q -  l / q .  

The solution of equation ( 6 )  for H is 

(7) 

Ho H ( t ) = -  
1 -irHot 
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where H,, is a constant operator, the value of H at t = 0. Now that we know H( t ) .  we 
can solve equation ( 5 )  formally for X ( t ) :  

X ( t )  = (l-irHot)-q/'X(0)(l -irH,t)'/"'. (9) 

If [Ho,X(0)]=O, we can use the fact that 

to write 

X(0) X( t )  = 
1 -irHot 

of which equation (8) is a special case. 
We note, also, that 

lim (1 -irHot)-'/'=exp(iHoi,t) 
Y-1 

and 

lim(1 -irHot)l/q'=exp(-iHot) 
4-1 

so that as q + 1 we indeed recover the familiar time dependence of an observable in 
the Heisenberg picture. 

The operators S =  (1 -irffot)"q' and S'= (1 -irHot)-q/' cannot be inverse to each 
other (unless q = * l )  since, as we have remarked above, SS=l/(l-irH,,I). If we 
choose q to lie on the unit circle, 

q = eie r = 2i sin 0 (13) 

then, provided that 1 + 2 sin 0 Hot > 0, 

S'= S+ (14) 

so that Hermiticity, at least, is preserved under time evolution. (Note that if one treats 
q as a formal variable, as is usually done with quantum groups, and so one does not 
complex conjugate it when taking the Hermitian adjoint of an expression in which q 
appears, then one cannot preserve Hermiticity. However, we do not have the formal 
structure of a quantum group here, so how one treats q appears to be a matter of 
choice.) No matter what the value of sin 0 (ZO) and whatever the spectrum of Ho, 
there will exist ranges of f for which the above inequality is violated, so there will be 
in general no guarantee that even Hermiticity will be preserved for all times. Neverthe- 
less, since this appears to be the best that one can do, we shall confine ourselves 
henceforth to the case q =eie. We shall see below (equations (49), (54) and ( 5 5 ) )  that 
Hermiticity is at least preserved in the case of a quantum-deformed free particle. 

The reader may he concerned that when q = eiR and r = 2i sin 0, the factor 1 -irHot = 
1 + 2 sin 0 Hot can vanish, leading to singularities in expressions like, for example, 
equations (8) and (9). We shall return to this point after we discuss the time evolution 
of states. 

Given the Heisenberg picture relation 

X,([) = s'(f)xH(o)s(t) (15) 
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we are led in the usual way to the Schrodinger picture, in which the operators remain 
constant in time, 

& ( t )  = X ( 0 )  =X,(O) (16) 

A Chodos and D G Caldi 

and likewise 

(V(t)l =(WO)IS'(r). (18) 

We define the Hamiltonian in the Schrodiriger picture, f i s ,  as the solution to the 
equation 

a 
at  

i - IV) = Ci,l~). (19) 

We denote this operator with a hat because it will turn out not to be what one gets 
simply from equation (8). This will be discussed further below. 

From equation (19) we deduce 

(20) 
a 
at 

i - s(t) = fiSs 

i.e. f i ,=iSS- 'e  (e-")H(t) with H ( t )  given by equation (8). Note that fii=-iS'-'$', 
in conformity with equation (18). 

Perhaps it is worthwhile at this point to recapitulate the situation regarding the 
various Hamiltonians of the system. 

We began with the definition (equation ( 5 ) )  of H ( t )  which governs time evolution 
via the modified Heisenberg equation of motion. Explicitly, 

Ho 
1+2(sin O)HOf'  H ( t ) =  

In the Schrodinger representation we find, simply, that H = Ho. Note that both H and 
Ho are Hermitian. 

However, there is another operator, &, defined as governing the time evolution of 
states in the Schrodinger picture: 

A(t) =e-"H(t). (22) 

& ( r )  is unusual in two respects: (i) even though it is defined in the Schrodinger picture 
it is time-dependent (this must be viewed as explicit time dependence); (ii) f i ( t )  is 
not Hermitian, but its lack of Hermiticity is of a particularly simple form-it is eCie 
times a Hermitian operator, which happens to be H ( t ) .  

If we transform H(r )  to the Heisenberg picture, we find 

The reason I?, fails to obey equation ( l l ) ,  even though it commutes with Ho, is 
because of its explicit time dependence. 
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Next we shall discuss the potential problem associated with the factor 1 + 2(sin 8 ) H d  
that occurs in the denominator of the time evolution operator. Let us examine the 
expectation value of an operator B ( r )  that obeys equation (9 ) ,  and that is therefore 
time-independent, 

Os( I) = ff (24) 

in the Schrodinger representation. We then have 

Now 

S ( t ) = ( 1 + 2 s i n  BHoi)'~'''=(1+2sin BHof) ' /2~( '~2)co 'a  (26) 

and 

S'( t )=(1+2 sin !3H,,t)-P/'=(1+2sin BHor)1~2+"/2""ta. (27) 

Expanding the numerator and denominator in eigenstates of Ho, 

Holn) = An In) (28) 

jior simpiicity we use a discrete notation, whether or not the spectrum oi Ho has a 
continuous region), we obtain 

(29) 

When f = f, = -1/2 sin B A k ,  provided (k lT0)  # 0, the dominant term in the numerator 
is that for which n = m = k ;  likewise, the dominant term in the denominator is the one 
with n = k. Hence 

d ( f k ) = ( k l f f l k )  (30) 

which is finite in general. So even though the norm of IY) is infinite for f = i,: the 
expectation value of an operator remains finite. 

Likewise, if the spectrum of Ho is bounded away from zero, so that there exist 
times for which 12 sin B h , f J x  1 Vn, then @(I)  also has a well defined limit as JtJ+m, 

notwithstanding the fact that (*I") is tending to zero in this limit. 
Observe that the eigenstates of Ho deserve the name 'stationary states' inasmuch 

as the expectation value of an operator 0 in such a state Ik) is given by (klBlk) 
independent of time. 

To examine the dynamics further, we shall, first, briefly study the classical 
mechanical case with deformed Poisson brackets. Second, we shall return to the 
quantum-mechanical case and look at a couple of simple examples. 

To deform classical mechanics, we introduce the q-Poisson bracket 
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where, for simplicity, we have assumed that there is only one degree of freedom, Then 
we modify Hamilton's equations to 

A Chodos and D G Caldi 

x = {x, H } ,  P = IP, W q .  (33) 
If H is a conventional Hamiltonian of the form 

we find 

and thus 

so that th 

P2 H =-+ V ( X )  
2m 

= 4p = - V j X )  

equation of motion for x remains unch 
use the equations of motion to evaluate 

f ~ =  ~ ' ( x ) p / m ( q - l / q )  

:ed. As 

which is found to be in agreement with the equation 

H = { H ,  H}.,, 

(34) 

(35) 

(36) 

consistency check, we 

(37) 

Furthermore, we note that although the Hamiltonian is not conserved, the equations 
of motion guarantee that the quantity 

is conserved and, indeed, one readily sees that 

{fi, H } , = O .  

Thus the modification (33) is rather trivial, at least for Hamiltonians of the standard 
form (34). One learns, however, that the mere fact that the Hamiltonian is not conserved 
is not cause for undue alarm-the dynamics may nevertheless be perfectly sensible. 

Next we return to the quantum case and study some simple examples to see what 
sort of dynamics arises from the q-deformed equations. In so doing, we shall, for 
simplicity, focus on the case in which there is one degree of freedom, x(f), and its 
associated momentum, p (  I ) .  Furthermore, we shall assume that x and p obey the usual 
canonical commutation relation [x, p ]  = i. The reader may wonder whether it might 
not be more appropriate to use variables x', p' that obey the quommutation relation 
[x', p'], = i. There appears to he no principle, other than perhaps simplicity, to guide 
one's choice. Note, however, that these two alternatives are not necessarily all that 
different, in the following sense. Introduce the anti-Hermitian operator G = (xp +px)/2i 
with the properties 

[ G : p ] = p  

[ G, X ]  = -x. 

One then finds that with the definitions 

x ' = f ( G ) x  (43) 
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and 

P ' =  h ( G ) p  (44) 
(x', p ' )  will obey the q-deformed Heisenberg algebra if (x, p) obey the undeformed 
algebra, provided 

Here C is an arbitrary constant. Furthermore, if (x, p) are Hermitian, so will be (x', p ' ) ,  
provided that 

q 2 =  -c*/c (46) 

f * ( G ) = f [ - ( G + l ) I .  (47) 

and 

(Here the notation is such that if f (G)=E,  f,G" then f * ( G ) = Z ,  fzG".) 
Equation (46) informs us that all this is possible only if q = e", hut that if this 

condition is met then there exists a whole family of transformations, labelled by 
functions f ( G )  satisfying equation (47), that maps the undeformed canonical pair 
(x, p )  into the deformed one?. This correspondence is only formal and deserves to be 
studied further, but for present purposes we shall assume that the pairs (x,p) and 
(x',p') are equivalent and therefore we shall stay with the former, which is simpler to 
calculate with. 

One may also consider whether it may be possible to find mapping functions similar 
to f (G) which transform H and any operator 0 so that they obey the usual commutator 
Heisenberg equations of motion rather than the quornmutator equation (5). We have 
searched for such maps, but due to the right-hand side of equation (5) being another 
operator, and the time derivative of 0 itself to boot, rather than simply i as in the x , p  
case, our attempts to find such maps have been unsuccessful so far. To the extent that 
one may assume such maps do not exist, it seems that the quommutator deformation 
( 5 )  is not trivially equivalent to the undeformed case. 

Consider, then, the case of a 'free' particle: 

P 2  H =-_ 
2m 

p commutes with H and, hence, from our general discussion above, 

where p o = p ( 0 ) .  
The behaviour of x is more complicated. The equation for its time evolution is 

i r  11.7, 

x ( t ) =  1--pnt x(0) 1--p;t i ;; * rq" ( 2nr ) 
One way to analyse this expression is to make formal use of the transform 

t The general solution to equation (47) has a Fourier transform of the form p ( k )  e'"', where p ( k l  is an 
arbitran, real function. We thank Charles Sommerfield for this remark. 
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to write 

and then to use 
eiiA/2b:x(~) e- ( i* /2)~ '  0 = x(  0) + poA 

to obtain x(f)  in either of the equivalent forms 

1 1 Po f X(f)= x(O)+- 1 - (ir/2m)pit 9 [1 -(ir/2m)p:tl2 

1 -(ir/2m)pir+'[1 -(ir/~m)p:t12' 
1 Po = x(0) 

As q + 1 it is clear that one obtains the familiar time dependence associated with a 
free particle. Note that equations (54) and (55)  exhibit x ( f )  in two mutually Hermitian 
conjugate forms, so that in this case x = xt  for all f. 

From equation (E) ,  we expect that 

1 Ho H ( t )  =-p'(t) = 
2m 1-irH,,f 

One can check that this is true in the present example, provided that one recalls that, 
because time evolution is not unitary, there is a difference between p2(f)  and ( ~ ( t ) ) ~ ,  
arid i t  is ihe former ihai one musi use in evaiuaiing l i j r j .  

As our second example, we choose the harmonic oscillator: 

(56) 

(for convenience, we scale the mass and frequency of the oscillator to unity). Using 
the same transform technique, we may write 

H=f (p '+x)  2 

(58) 
with similar expressions for p. Here <(I) denotes the usual quantum-mechanical time 
dependence of x:  

J(t) = e'H.'x(0) e.-iH"', (59) 

Since for the harmonic oscillator case the functions 2(f) and i(t) are particularly 
simple, one can perform the s, and s2 integrals to obtain 

x ( f )  = $ { ( a  -ib)[l -ir(H,+ l)t]-"/'+(o +ib)[ l  - ir(Ho- l)f]-q'r](l --.irHof)l'q' (60) 

= + ( I  -irHot)-q" 

x{[l-ir(Ho+ l)f] l~ '"(a+ib)+[l  - ir(Ho- l)f]''q'(a -ib)) (61) 
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and 
p ( 1 )  =${(b+ia)[l -ir(H,+ l)t]-q"+(b-ia)[l -ir(Ho- l ) t ] - q / ' } ( l  -irHot)'/q' (62) 

(63) 
where a=x(O) and b=p(O). 

These results could also have been obtained, perhaps more quickly, by observing 
that a *ib are the raising and lowering operators for H o ,  but the expressions (57) and 
(58) have the advantage of greater generality. 

We now consider another deformation of the Heisenberg equations of motion, 
motivated by the deforming part of the definition of su(2), given by equation (26). 
Thus, we assume the equation of motion of an operator X (  1 )  to be given by 

i[H(t) ,  x ( t ) l =  [ X ( t ) l q .  (64) 
Again, as 9+  1 we recover the usual equations of motion. Unlike the quommutator 
case of equation (9, this deformation has the obvious advantage that, as usual, 
operators commute with themselves, so that, in particular, the Hamiltonian itself is a 
constant of the motion and energy is conserved. Furthermore, Hermiticity appears to 
be preserved in the cases when q is treated like a formal variable or when 9 = eie. 

In order formally to integrate equation (64), let us write 9=eh.  Then [XI,= 
sinh(hx/Z)/sinh(h/2), and, writing h'= sinh(h/2), we find, for X( t ) ,  

=$(I -irHot)-q/' 
x {[l - ir(H,+ l)t]""(b - io)+ [ l  -ir(Ho- l)t]""(b +ia)} 

Because of the highly non-trivial nonlinearities, it is difficult to go further in the general 
case. Thus we cannot make the type of general statements about the transformation 
to, and the results in, the Schrodinger picture which we were able to make in the 
quommutator case. Equation (64) can probably be represented in the Schrodinger 
representation, if at all, only by some version of a nonlinear Schrodinger equation. 
(Recent examples of such equations are discussed in [9].) 

However, for the free particle the differential equations separate simply, and p is 
constant, so that we find, for ~ ( 0 ,  

(66) 

which is a well-behaved, single-valued function. This result is certainly different from 
the usual quantum-mechanical result, ~ ( t )  = p t ,  but not only is it quite sensible, it also 
reduces to this usual behaviour as 9 + 1. It is also apparent that the behaviour given 
by equation (66) is very different from that obtained from the quommutator deforma- 
tion, equations (54) and ( 5 5 ) .  Time evolution is certainly unitary here in this free case. 
Although we have not yet been able to establish unitarity in general, we suspect it to 
be there. These are yet more indications that the two methods are not equivalent. 

When we seek to go beyond the free particle, the nonlinearity of this deformed 
quantum mechanics confronts us squarely. Even forthe harmonic oscillator, the coupled 
nonlinear differential equations 

2 t  . 
h 

~ ( t )  -x(O) =- sinh ' ( i p )  

(67) 

do  not lend themselves to a closed-form solution, although a numerical solution is, of 
course, possible. 

p(t)=;sinh 2 .  - ' ( ix( t ) )  
x ( t ) =  - sinh l ( i p ( t ) )  (3 . - 
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3. Discussion 

The two methods we have studied are not by any means the only possible deformations 
that one could be inspired to consider by studying the literature on quantum groups. 
For example, there exists the so-called quantum derivative [lo] 

A Chodos and D G Caldi 

which goes over into the usual derivative as 9 + 1. This arises, for example, when one 
notices that it is possible to deform the following representation of SU(2) acting on 
functions of two variables U and U, 

by letting J+ = uD, and J _  = vD, (while letting Jo alone), thereby satisfying the quantum 
algebra (2). This suggests at least two other deformations of the Heisenberg equations: 

( a )  D,X=i[H,X]  (69) 
and 

( b )  DcX=i[H,X], .  (70) 
Choice ( a )  is somewhat similar to our second method (equation (64)) and has the 
same advantage that H should be a constant, unlike equation (5) or choice (b). 
However, unlike equation ( 9 ,  which leads to the integrated form (equation (9)). 
choices ( a )  or ( b )  are even harder to integrate than equation (64). So on purely 
pragmatic grounds we have concentrated mostly on equation (5). 

The quantum deformation (5) has some manifestly unpleasant properties, chief 
among them that: (i) H is not a constant; (ii) time evolution is not unitary; (iii) the 
norm of a state can become infinite and, in general, tends to vanish for large times. 
Of these, the first is perhaps the least worrisome since, as we saw in the classical case, 
the dynamics may nevertheless be perfectly sensible, and also, even though H # 0, 
there are plenty of constant operators about, such as Ho,  whose eigenstates can be 
used as a basis and whose eigenvalues can be thought of as energy. 

Properties (ii) and (iii) are clearly related, since if time evolution were unitary, the 
norm of a state could not change. What the lack of unitarity seems to imply is that, 
just as in the passage from classical to ordinary quantum mechanics one gives up 
determinism in favour of probability amplitudes that are defined as matrix elements 
in Hilbert space, here one is sacrificing the physical significance of the Hilbert space 
inner product but, it appears, retaining the notion of an expectation value, which is 
an appropriate ratio of such inner products. 

If anything has been gained from such a sacrifice it may be the suggestion that the 
quantum deformation parameter acts as a cut-off that discretizes the time evolution of 
the system. This suggestion arises in at least two ways. First, the quommutator in the 
context of quantum groups is equivalent to the introduction of the quantum derivative, 
which is an obvious discretization of the ordinary derivative. Second, inspection of 
equation (9) reveals that the evolution operator S(r) resembles a discretization of the 
exponential e-iHo‘. In fact, if we write 
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we see that S ( t )  can be thought of as the evolution operator appropriate to n = l / q r  
discrete steps, with Hamiltonian Hais,, = ( l / q ) H ,  (cf equation (12 ) ) ,  provided we agree 
to overlook the fact that n = l/(e2" - 1) is not exactly a positive integer. 

A small technical point is that neither the quommutator nor the deformed Poisson 
bracket of equation (32) obeys the usual Jacobi identity. Of course they each obey a 
suitably deformed version of the Jacobi identity. (This follows immediately because 
the Jacobi identity holds when q = 1 . )  The fact that our Poisson bracket is non- 
associative explains why it is not a special case of the Moyal bracket, which, as Fletcher 
has shown [ l l ] ,  is the most general associative deformation of the Poisson bracket. 

The examples we have studied explicitly involved only a single degree of freedom. 
In order to make these ideas relevant to, say (to choose a wild example), the regulariz- 
ation of quantum gravity, one must understand how to extend them to a field-theoretic 
setting. This extension has yet to be investigated. 
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